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The Tevatron Accelerator
• World’s highest energy collider

(until 2007)
– Proton-antiproton Synchrotron
– Experiments CDF and D0

• Run I (1992-1996)
– √s = 1.8 TeV
– 6 x 6 bunches with 3 µs spacing
– ~100 pb-1 int. luminosity

• Major upgrade to accelerator complex
– Main Injector (x5)
– Pbar Recycler (x2)

• Run II (2001-2009 ?)
– √s = 1.96 TeV
– 36 x 36 bunches with 396 ns spacing
– Current peak luminosity 

>15.0 x 1031 cm-2s-1   = 5 x Run I
– Aim for 4-9 fb-1 int. luminosity in Run II –

both experiments have now > 1 fb-1 on tape.
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CDF and D0 in Run II

L2 trigger on displaced vertices
Excellent tracking resolution

Excellent muon ID and acceptance
Excellent tracking acceptance |η| < 2-3

Both detectors
•Silicon microvertex tracker
•Solenoid
•High rate trigger/DAQ
•Calorimeters and muons
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The Standard Model
• Matter is made out of  

fermions: 
– quarks and leptons
– 3 generations

• Forces are carried by 
Bosons:
– Electroweak: γ,W,Z
– Strong: gluons

• Higgs boson:
– Gives mass to particles
– Not found yet HH
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Electroweak And 
Strong Force

• Quantum field theory is used to describe 
forces of nature:

– Unified description of weak and electromagnetic 
force (Glashow, Salam, Weinberg):

• Photon
• W, Z

– Strong force described by 
Quantumchromodynamics (QCD)

• 8 gluons 
• Precision measurements test validity of 

model and calculations
• QCD has unique features:

- Test of the SM and phenomenological
models  in its own right

• QCD is indeed the ‘strong force’
- i.e. large cross sections for background towards

searches beyond the Standard Model

αem≈1/137

αs≈1

αW≈10-6
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At high Q (short distances)  
perturbation theory can be used
to compute partonic cross sections

At low Q (large distances) pQCD
breaks down (and we rely on 
phenomenological models) String model for hadronization

Quarks confined inside hadrons

Q

QCD : Asymptotic Freedom & Confinement
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QCD Factorization
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Partonic cross section:  calculated to a given order in pQCD

PDFs of parton inside the proton: needs experimental input
(universal can be used to compute different processes)

11Px
22Px
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2P

QCD:  free quarks and 
gluons are not allowed…
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Dijet Event  in CDF Detector

ET = 666 GeV
η =  0.43 

ET = 633 GeV
η = -0.19

Dijet Mass = 1.36 TeV
(probing distance ~10-19 m)CDF (r-φ view)
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What do we really measure? 

Hadronic showers

EM
showers

Meas’ment = PDF + pQCD ME + pQCD Approximation + UE + Had + Algo

• Parton Jets:
Correct particle level jets for  for fragmentation effects
Correct  for particles from the ‘Underlying Event’
(soft initial and final state gluon radiation and beam remnant 

interactions)

• Hadron Jets:
Cluster (stable) particles in a jet algorithm using  MC –
correct data for difference of MC particle jet  to MC 
calorimeter jet

• Calorimeter Jets:
Cluster calorimeter towers to jets  by a jet algorithm 
Correct for detector resolution and efficiency
Correct  for “pile-up” – extra minimum bias events 
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Jet Algorithms
Jets are collimated sprays of hadrons 
originating from the hard scattering

Appropriate jet search algorithms are 
necessary to define/study  hard physics 
and compare with theory

Different algorithms 
correspond to different
observables and 

give different results!

KT
Cluster particle/towers

Based on their relative pT

Infrared and coll. safe

No merging/spitting

MidPoint (cone)
Cluster particle/towers

Based on their proximity  
in the y-φ plane
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Inclusive Jet Production
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• Probes physics at small distances ≈10-19m

• Higher reach in pT due to increased √s

• Test pQCD over more than 9 decades in σ

• Sensitive to PDF (gluon @ high-x)

Inclusive Jet Production

Uncertainty on gluon PDF 
(from CTEQ6)
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Inclusive Jet Production: Run I legacy
• Run I

– Cone jet finding algorithm
– Apparent excess at high pT, 

but within the overall 
systematic errors

– Is it New Physics or parton
distribution function ? 

• Between Run I and Run II
– Machinery for improved jet 

finding algorithms:
- MidPoint Cone Algorithm
- kT Algorithm

PDFs are further tunedda
ta

/th
eo

ry
 –

1,
 %
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Inclusive Jet Production 
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new 

physics  
~|η|<1

Pin down pdfs
here and  use 

DGLAP 
evolution

• Gluon contribution significant
• use forward jets to pin down pdfs versus 
new physics at higher Q2 in central region
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2 regions in rapidity explored 
|yjet|< 0.4
0.4 <|yjet|< 0.8

Good agreement with 
NLO prediction ( direct comparison
of hadron to parton level i.e. 
neglect fragmentation and UE)

Jet energy scale uncertainty
dominant error 

L = 380 pb-1

Inclusive Jet Cross Section-D0
(MidPoint algorithm R=0.7)
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Inclusive Jet Cross Section
• MidPoint algorithm R = 0.7
• Central jets:  0.1<|yjet|< 0.7
• More than 8 orders of magnitude 

covered 

L = 1 fb-1 

Sensitive to UE+Hadronisation effects 
for PT<100 GeV/cGood agreement with NLO predictions 

(direct comparison of hadron to parton level
as well as data corrected to parton level)

• Data dominated by  Jet Energy Scale (JES) 
uncertainties (2-3%)

• Thy uncertainty dominated by high x gluon 
PDF 
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Inclusive Jet Cross Section

KT algorithm performs well in hadron collisions
(i.e. with an underlying event)
Good agreement with NLO  pQCD (both data and thy compared at hadron level)

L = 980 pb-1 
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Forward jets (kT algorithm)
0.7<|Y|<1.1 1.1<|Y|<1.6 1.6<|Y|<2.1

Data will further constrain high x gluon in global fits
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High-x Event

High-x low-x

A “Rutherford type” parton
backscattering
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Direct Photon Production
jet

γ

Using prompt photons one can 
precisely study QCD dynamics:

• Well known coupling to quarks
• Give access to lower Pt 
• Clean: no need to define "jets"
• constrain of gluon PDF 

Experimentally difficult because of 
large background from        decays

γ

γ
γπ0

Preshower
detector

Shower maximum
detector

0π

γ

jet
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Inclusive γ cross section 

• Errors ~20%
• Very promising at  ~ fb-1 

luminosities to constrain 
gluon PDF at high xGood agreement with  pQCD NLO

• Highest pT(γ) is 442 GeV/c 
– 3 events above 300 GeV/c not displayed
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Jet-Jet Correlations
Jet#1-Jet#2 ∆φ Distribution

• MidPoint Cone Algorithm  (R = 0.7, fmerge = 
0.5) 

• L = 150 pb-1 (Phys. Rev. Lett. 94 221801 
(2005))

• Data/HERWIG agreement good.
• Data/PYTHIA(TuneA) agreement good
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Inclusive b-jet Production
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B-quark production in hadron collisions
Leading Order Next to Leading Order

Gluon splitting

Flavor excitation

Flavor creation

g

g

g
g

Q

Q

other radiative corrections..

Experimental inputs are B-Hadrons or  b-jets rather than b-quark

( )
( )

( )
( ) DFbpd

bXqgggqqd
Bpd
BXppd Bbpp

TT

→⊗⊗
→

=
→ //σσ

NLO QCD

Proton structure

Fragmentation

=> Another stringent test of NLO QCD 
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Tagging Bs 
• B hadrons are massive

– decay into lighter flavors
– use decay products to tag B
– ‘Soft Lepton Tag’

• B hadrons are long lived
– cτ ~ 460 µm
– give rise to secondary vertices
– tracks from secondary vertex have 

non-vanishing impact parameter d0
at primary vertex

– ‘Secondary Vertex Tag’  & 
‘Jet probability’
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Run I Legacy
• In Run I, a factor 3 discrepancy

was reported between theory
predictions and experimental
data by both CDF and DØ 
in b-hadron cross sections
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High PT b-jet cross section

• More than 6 orders of 
magnitude covered

• Data systematic uncertainties  
dominated by Jet Energy 
Scale and b-fraction 
uncertainties

• Main uncertainties on NLO 
due µR/µF scales  

Agreement with  pQCD NLO within systematic uncertainties 
Sensitive to high order effect (NNLO)

• Beauty production Test of pQCD
• MidPoint jets: R = 0.7,  |y jet|< 0.7
• Reconstruct secondary vertex from B 

hadron decays (b-tagging)
• Shape of secondary vertex  mass 

used to extract b-fraction from data

L = 300 pb-1
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Extract fraction of b-tagged jets from data using
shape of mass of secondary vertex as 
discriminating quantity

bin-by-bin as a function of jet pT
2 component fit:b and non-b templates
(Monte Carlo PYTHIA)

Fraction of tagged b-jets

82 < pT
jet < 90 GeV/c
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µ-Tagged Jets Correlations

• Searching for muons in jets enhances the heavy flavor content.
• Data/PYTHIA  ~ 1.3 flat.

• MidPoint Cone             
Algorithm (R = 0.5)

• Require muon in                         
R = 0.5.

• L  = 300 pb-1

• |yjet| < 0.5
• PT(m) > 5 GeV/c

µ-Tagged Jets Cross Section

D0
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The b-bbar DiJet Cross-Section

28.49 ± 0.58nbMC@NLO

21.53 ± 0.66nbHERWIG CTEQ5L

38.71 ± 0.62nbPYTHIA Tune A 
CTEQ5L

• ET(b-jet#1) > 30 GeV, 
ET(b-jet#2) > 20 GeV, 
|η(b-jets)| < 1.2.

Preliminary CDF Results:

σbb = 34.5 ± 1.8 ± 10.5 nb
QCD Monte-Carlo Predictions:

• Large SystematicUncertainty:
Jet Energy Scale     (~20%).
b-tagging Efficiency (~8%)

• PYTHIA vs.Data ~ 1.4 flat
expect due NLO corrections
Consistent with D0 result
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The b-bbar DiJet Cross-Section

28.49 ± 0.58nbMC@NLO

35.7 ± 2.0 nbMC@NLO + 
JIMMY

21.53 ± 0.66nbHERWIG CTEQ5L

38.71 ± 0.62nbPYTHIA Tune A 
CTEQ5L

• ET(b-jet#1) > 30 GeV, 
ET(b-jet#2) > 20 GeV, 
|η(b-jets)| < 1.2.

Preliminary CDF Results:

σbb = 34.5 ± 1.8 ± 10.5 nb
QCD Monte-Carlo Predictions:

JIMMY: HERWIG + multiple parton
interactions

Enhances underlying event and b-
cross section

=> Better agreement of NLO 
calculation with data!
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b-bbar DiJet Correlations

• The two b-jets are predominately “back-to-back”
– Angular distribution sensitive to fraction of flavor creation 

(back to back) to gluon splitting and flavor excitation 

• Pythia Tune A agrees fairly well with the  
correlation

– Run 1b data was used in Pythia Tune A

Tune A!
b-jet direction 

∆φ 

“Toward” 

“Away” 

bbar-jet 
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Vector Boson/Jets Final States:
Background to Searches
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QCD and New Physics

• Preliminary MC studies (1999) suggested that
SUSY  could be discovered via cascade 
decays  within weeks  after LHC start-up

• New W/Z+jet(s) programs (ALPGEN)  
predict a much harder jet Et distributions than
PYTHIA+PS

1999  ATLAS TDR

2005 evaluation

TTeff EHM +=
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W+jets production

• Restrict σW :

– W νe,  |ηe|< 1.1

• JETCLU jets (R=0.4):

– ET
jets>15 GeV,|ηjet| < 2.

• Uncertainties dominated by
background subtraction and 
Jet Energy Scale 

L = 320 pb-1

• Background to top and Higgs Physics
• Testing ground for pQCD in multijet

environment 
– Key sample to test LO and NLO ME+PS 

predictions

LO predictions normalized to data  
integrated cross sections

Shape comparison only
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W+jets production

Differential cross section w.r.t. di-jet 
∆R in the W+2 jet inclusive sample

Differential cross section 
w.r.t. di-jet invariant mass in 
the W+2 jet inclusive sample

LO predictions normalized to data 
integrated cross sections

Shape comparison only
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MCFM: NLO for Z+1p or Z+2p good 
description of the measured cross sections

ME + PS:  with MADGRAPH tree level process 
up to 3 partons reproduce shape of Njet
distributions (Pythia used for PS)

Z+jets production
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• Same motivations as W + jets
� σ(Z) ~ σ(W) / 10, but Z e+e- cleaner 

• Central electrons (|η|<1.1)
• MidPoint jets:

– R = 0.5, pT > 20 GeV/c, |yjet|<2.5

L = 343 pb-1

pT spectra of nth jet distribution 

Z+j

Z+2jZ+3j
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Comparison of Sherpa (ME+PS) and Pythia(PS)

Pythia:Z+1 jets ME Sherpa:Z+≤3 jets ME

- Pythia tends to under-
estimate high pT jets,
especially at high jet
multiplicity

- Sherpa describes data
well up to 4 jets

L=950 pb-1 L=950 pb-1

(Z→ee)+jets

L=950 pb-1
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Z+b jet production
In QCD, Z+b can help constrain b density in the proton

Probe the heavy flavor content of proton

+

With HERA Fbb
2 data:

CTEQ below MRST by 50% and
below data Z+b jets can help 
understand this picture

Important background 
for new physics
such as search for ZH 
Higgs production
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Z+b jets production  
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- Leptonic decays for Z e+e-, µ+µ−

- Z associated with jets 
(CDF: JETCLU, D0: MidPoint) R = 0.7, |ηjet|<1.5, ET (pT) >20 GeV
- Look for tagged jets in Z events

Extract fraction of b-tagged jets from 
secondary vertex Mass: no assumption 
on the charm content L = 335 pb-1

- Dominant systematic uncertainty: 
B-fraction for jet events with 2 heavy quarks. 
Jet Energy Scale

Both CDF and D0:

CDF Assumption on the charm 
content from theoretical 
prediction: Nc=1.69Nb

D0
L = 180 pb-1

Agreement with NLO prediction: 004.0018.0 ±=R
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Non-Perturbative Effects
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The “Underlying Event”

 

Proton AntiProton

PT(hard)

Outgoing Parton 

Outgoing Parton

Underlying EventUnderlying Event 

Initial-State Radiation 

Final-State 
Radiation 

The hard scattering process:
• Outgoing two jets
• initial & final state radiation (?)

The “underlying event”:
• soft initial & final-state radiation 
• the “beam-beam remnants” 
• possible multiple parton interactions
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Jet #1 Direction

∆φ 

“Transverse” “Transverse”

“Toward” 

“Away” 

“Toward-Side” Jet

“Away-Side” Jet

The “Transverse” Region
as defined by the Leading Jet

• Look at the “transverse” region as defined by the leading calorimeter jet 
(MidPoint, R = 0.7, fmerge = 0.75, |η| < 2). 

• Define |∆φ| < 60o as “Toward”, 60o < -∆φ < 120o and 60o < ∆φ < 120o as 
“Transverse 1” and “Transverse 2”, and |∆φ| > 120o as “Away”.).

• Study the charged particles (pT > 0.5 GeV/c, |η| < 1) and form the 
charged particle density, dNchg/dhdf, and the charged scalar pT sum 
density, dPTsum/dηdφ, by dividing by the area in η-φ space.

• Study the calorimeter towers (ET > 0.1 GeV, |η| < 1) and form the scalar 
ET sum density, dETsum/dηdφ. 

Charged Particles (pT > 0.5 GeV/c, |η| < 1)
Calorimeter Towers (ET > 0.1 GeV, |η| < 1)

“Transverse” region is 
very sensitive to the 
“underlying event”!

 Calorimeter Jet #1 
Direction 

∆φ 

“Toward” 

“Transverse” “Transverse” 

“Away” 

-1 +1 

φ 

2π 

0 
η 

Leading 
Jet 

Toward Region 

Transverse 
Region 

Transverse 
Region 

Away Region 

Away Region 
Look at the charged 

particle density and the 
ETsum density in the 
“transverse” region!

 Jet #1 Direction 

∆φ 

“Transverse” “Transverse”

“Toward” 

“Away” 

“Toward-Side” Jet

“Away-Side” Jet

Jet #3 

“Transverse” region 
recieves contributions 
from initial & final-

state radiation!
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"TransMAX" Charged PTsum Density: dPT/dηdφ
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 Jet #1 Direction 
∆φ 

“Toward” 

“TransMAX” “TransMIN” 

“Away” 

 Jet #1 Direction
∆φ 

“Toward”

“TransMAX” “TransMIN”

Jet #2 Direction

“Away” 

“Leading Jet” “Back-to-Back”

“TransMAX/MIN” PTsum Density
PYTHIA Tune A vs HERWIG

• Order transverse regions according to 
charged PTsum density, dPTsum/dηdφ, 
into “transMAX” and “transMIN” region
(pT > 0.5 GeV/c, |η| < 1) versus 
PT(jet#1) for “Leading Jet” and “Back-
to-Back” events.

• transMAX picks up the hard component
• transMIN picks up beam-beam remnant
• Compare the (corrected) data with 

PYTHIA Tune A (with MPI) and 
HERWIG (without MPI) at the particle 
level. Rick Field, U of Florida
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 Jet #1 Direction 
∆φ 

“Toward” 

“TransMAX” “TransMIN” 

“Away” 
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“TransMAX/MIN” PTsum Density
PYTHIA Tune A vs JIMMY

• Order transverse regions according to 
charged PTsum density, dPTsum/dηdφ, 
into “transMAX” and “transMIN” region
(pT > 0.5 GeV/c, |η| < 1) versus 
PT(jet#1) for “Leading Jet” and “Back-
to-Back” events.

• transMAX picks up the hard component
• transMIN picks up beam-beam remnant
• Compare the (corrected) data with 

PYTHIA Tune A (with MPI) and a tuned 
version of JIMMY (with MPI) at the 
particle level. Rick Field, U of Florida
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Conclusions
• QCD at the Tevatron is being tested in a vast kinematical range

– 9 orders of magnitude in inclusive cross section
– stringent pQCD tests at NLO
– Input in global PDF fits
– Historical Run I excesses (inclusive jet cross section and heavy flavor jet cross section) 

largely understood

• QCD processes (especially  jets +vector boson) pose significant 
background for searches beyond the Standard Model

– MC tools cannot be blindly relied upon – measuring and testing a very crucial tool for 
future searches at the High Energy Frontier

– QCD at the Tevatron provides a crucial testing/calibration ground for these tools 
(underlying event)

– ME+PS models show good agreement – real NLO calculations (MC@NLO) very 
promising

• D0 and CDF are looking forward into a bright future of ~ fb-1 QCD physics 
at the Tevatron

– QCD results amongst the first using the full data sets accumulated so far
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BACKUP
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Charged Particle Density
∆φ Dependence

 Jet #1 Direction 
∆φ 

“Toward” 

“Transverse” “Transverse”

“Away” 

• Examine  “transverse” region as defined by the leading jet (|η| < 2) or by the 
leading two jets (|η| < 2).
- “Back-to-Back” events are selected to have at least two jets with Jet#1 and Jet#2 

nearly “back-to-back” (∆φ12 > 150o) with almost equal transverse momenta
(PT(jet#2)/PT(jet#1) > 0.8) and PT(jet#3) < 15 GeV/c.

 Jet #1 Direction 

∆φ 

“Toward” 

“Transverse” “Transverse”

“Away” 

Jet #2 Direction

Charged Particle Density: dN/dηdφ
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Charged Particles 
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30 < ET(jet#1) < 70 GeV

"Transverse" 
Region

Jet#1

Refer to this as a 
“Leading Jet” event

Refer to this as a 
“Back-to-Back” event

Subset
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Run II Inclusive Jets: kT vs MidPoint
• Jet finding algorithms

– left: kT (D=0.7)
– right: MidPoint (R=0.7)
– both for central jets only: 

0.1<|Y|<0.7

• Comparison to NLO:
– both agree with NLO and 

have similar patterns in 
Data/Theory

• UE+Had Corrections:
– UE+Hadronization are 

phenomenological 
models, not a theory!

– matter only for PT<100
– kT algorithm is twice 

more sensitive

kT jet-finding algorithm                                         MidPoint Cone algorithm
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Inclusive γ cross section (D0) 

• Separating photons from jet 
backgrounds is challenging

• Use neural network (NN)
– Track isolation and calorimeter 

shower shape variables

• Sensitive to PDF and hard scatter 
dynamics: no need to define “jets”

• Performed for central photons, |yg|< 0.9 
No Jet Energy Scale error,  use good 
understanding of  EM energy scale 

purity uncertainties dominates
L = 330 pb-1

γq

qg
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Forward jets (kT algorithm ,CDF)

Good agreement 
with the NLO pQCD
for jets up to |Y|<2.1

•|yjet|<0.1
•0.1<|yjet|<0.7
•0.7<|yjet|<1.1
•1.1<|yjet|<1.6
•1.6<|yjet|<2.1

Five regions in jet rapidity 
explored (D=0.7):
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Inclusive Jet Cross Section-CDF 
(MidPoint algorithm R=0.7)

Central jets:  0.1<|yjet|< 0.7

• Systematic dominated by  Jet 
Energy Scale uncertainties (2-3%)

• NLO uncertainty due to high x 
gluon PDF 

Sensitive to 
UE+Hadronisation effects 
for PT<100 GeV/c

Good agreement with NLO CTEQ6.1M

L=1 fb-1
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Run II -> MidPoint algorithm

1. Define a list of seeds  using CAL 
towers with E   > 1 GeV

2. Draw a cone of radius R around 
each seed and form  “proto-jet” 

3. Draw new cones around “proto-
jets” and iterate until stable cones

4. Put seed in  Midpoint (η−φ) for 
each pair of proto-jets    
separated by less than 2R and 
iterate for stable jets

5. Merging/Splitting 

),P : jets(massive 

   , 

jet
T

jet
k

K
i

jet
i

k

Kjet

Y

PPEE ∑∑ ==

Cross section calculable in  pQCD

T
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Run I  Cone algorithm

1. Seeds  with E  > 1 GeV

2. Draw a cone around each seed and 
reconstruct the “proto-jet”

3. Draw new cones around “proto-jets” 
and iterate until stability is achieved 

4. Look for possible overlaps

jet
T

k k
k
Tjet

jet
T

k k
k
Tjet

k

K
T

jet
T

E
E

  ,
E
E

  

 ,EE                   

∑∑

∑
φ⋅

=φ
η⋅

=η

=

T

merged if common transverse 
energy between jets is  more 
than 75 % of smallest jet…..

T

pQCD NLO  does not have overlaps
(at most two partons in one jet)

Therefore it uses larger cone 
R’ = Rsep x R  to emulate 
experimental procedure 
-> arbitrary parameter 
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Cone algorithm

η

φ
TE

NLO pQCD diagram

Convenient to define jets in η−φ space
(shape invariant against longitudinal boost)

CDF

JET
2

JET F|M|dd Φ=σ
∧
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Jets at 1.96 TeV

“Theory Jets” “Real Jets”

NLO parton level calculation 2->N tree level process (ALPGEN) 
Mention Matching to parton shower CKKM / MLM ? 
MC@NLO
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C (ξ1,ξ 2 ) =

dn
dξ1dξ 2

 

 
 

 

 
 

dn
dξ1

 

 
 

 

 
 
dn
dξ 2

 

 
 

 

 
 

= c 0 (E jet ) + c1(E jet ) • (∆ξ1 + ∆ξ 2 ) + c 2 (E jet ) • (∆ξ1 − ∆ξ 2 ) 2

NLLA
Qeff=230 MeVAll particle pairs in cone 0.5 around 

the jet axis 
ξ=Ln(Ejet/Pparticle), ∆ξ=ξ-ξAt Max

Q=EjetxθCone; Qeff= parton shower 
cutoff in the theory

gluon jet
quark jet

Qeff≈150MeV

Local parton-hadron duality: 
correlation survives 

hadronization

C1

C2

Two particle momentum correlation & 
hadronization
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Diphoton Production
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SUSY Cascade Decays @ LHC

ATLAS TDR

Discovery within a month ….



60

Discovery within a month ?
But the SM (QCD) backgrounds are tricky!

F.Gianotti, M. Mangano
hep-ph-0504221

Clearly, we need to understand Z/W+jets process

ME+PS (only
Z+4 jets)

All background
based on PS


